Resources for selling and running an (inter)active intro physics class

This post is in response to Chad Orzel’s recent post about moving toward a more active classroom. He plans to get the students to read the textbook before coming to class, and then minimize lecture in class in favour of “in-class discussion/ problem solving/ questions/ etc.” At the end of the post he puts out a call for resources, which is where this post comes in.

There are three main things I want to discuss in this post, and (other than some links to specific clicker resources) they are all relevant to Chad or anybody else considering moving toward a more active classroom.

  1. Salesmanship is key. You need to generate buy-in from the students so that they truly believe that the reason you are doing all of this is so that they will learn more.
  2. When implementing any sort of “learn before class” strategy, you need to step back and decide what you realistically expect them to be able to learn  from reading the textbook or watching the multimedia pres
    entation.
  3. The easiest first step toward a more (inter)active classroom is the appropriate use of clickers or some reasonable low-tech substitute.

Salesmanship

KNA, a commenter on Chad’s post writes:
I also realized early on in my career that salesmanship is key. I need to explain why I want them to do the reading, and the 3 JiTT (ed. JiTT = Just-in-Time-Teaching) questions, and the homework problems sets, etc. My taking some time periodically to explain why it is all in their best interest (citing the PER studies, or showing them the correlation between homework done and exam grades), seems to help a lot with the end of term evals.

And I completely agree. I changed a lot of little things between my first and second year of teaching intro physics, but the thing that seemed to matter the most is that I managed to generate much more buy-in from the students the second year that I taught. Once they understood and believed that all the “crazy” stuff I was doing was for their benefit and was backed up by research, they followed me down all the different paths that I took them. My student evals, for basically the same course, went up significantly (0.75ish on a 5-point scale) between the first and second years.

A resource that I will point out for helping to generate student buy-in was put together for Peer Instruction (in Computer Science), but much of what is in there is applicable beyond Peer Instruction to the interactive classroom in general. Beth Simon (Lecturer at UCSD and former CWSEI STLF) made two screencasts to show/discuss how she generates student buy-in:

Reading assignments and other “learning before class” assignments

This seems to be a topic that I have posted about many times and for which I have had many conversations. I will briefly summarize my thoughts here, while pointing interested readers to some relevant posts and conversations.

When implementing “read the text before class” or any other type of “learn before class” assignments, you have to establish what exactly you want the students to get out of these assignments. My purpose for these types of assignments is to get them familiar with the terminology and lowest-level concepts, anything beyond that is what I want to work on in class. With that purpose in mind, not every single paragraph or section of a given chapter is relevant for my students to read before coming to class. I refer to this as “textbook overhead” and Mylene discussed this as part of a great post on student preparation for class.

I have tried reading quizzes at the beginning of class and found that it was too hard to pitch them at the exact right level that most of the students that did the reading would get them and that most of the students that didn’t do the reading wouldn’t get them.

Last year I used a modified version of the reading assignment portion of Jitt (this list was originally posted here):

  1. Assign reading
  2. Give them 3 questions. These questions are either directly from the JiTT book (I like their estimation questions) or are easy clicker questions pulled from my collection. For the clicker questions I ask them explain their reasoning in addition to simply answering the question.
  3. Get them to submit via web-form or email
  4. I respond to everybody’s submissions for each question to try to help clear up any mistakes in their thinking. I use a healthy dose of copy and paste after the first few and can make it through 30ish submissions in just over an hour.
  5. Give them some sort of credit for each question in which they made an effortful response whether they were correct or incorrect.

I was very happy with how this worked out. I think it really helped that I always responded to each and every one of their answers, even if it was nothing more than “great explanation” for a correct answer. I generated enough buy-in to have an average completion rate of 78% on these assignments over the term in my Mechanics course last time I taught it. I typically weight these assignments at 8-10% of their final grade so they have pretty strong (external) incentive for them to do them.

As I mentioned previously, my current thinking is that I want the initial presentation (reading or screencast) that the students encounter to be one that gets them familiar with terminology and low-level or core concepts. As Mylene says “It’s crazy to expect a single book to be both a reference for the pro and an introduction for the novice.” So that leaves me in a position where I need to generate my own “first-contact” reading materials or screencasts that best suit my needs and this is something that I am going to try out in my 3rd-year Quantum Mechanics course this fall.

It turns out that for intro physics there is an option which will save me this work. I am using smartPhysics this year (disclaimer: the publisher is providing the text and online access completely free to my students for the purposes of evaluation). To explain what smartPhysics is, I will pseudo-quote from something I previously wrote:

For those teaching intro physics that are more interested in screencasting/pre-class multimedia video presentations instead of pre-class reading assignments, you might wish to take a look at SmartPhysics. It’s a package developed by the PER group at UIUC that consists of online homework, online pre-class multimedia presentations and a shorter than usual textbook (read: cheaper than usual) because there are no end-of-chapter questions in the book, and the book’s presentation is geared more toward being a student reference since the multi-media presentations take care of the the “first time encountering a topic” level of exposition. My understanding is that they paid great attention to Mayer’s research on minimizing cognitive load during multimedia presentations. I will be using SmartPhysics for my first time this coming fall and will certainly write a post about my experience once I’m up and running.

Since writing that I have realized that the text from the textbook is more or less the transcript of the multimedia presentations so in a way this textbook actually is a reference for the pro and an introduction for the novice. They get into more challenging applications of concepts in their interactive examples which are part of the online homework assignments. For example, they don’t even mention objects landing at a different height than the launch height in the projectile motion portion of the textbook, but have an interactive example to look at this extension of projectile motion.

The thing with smartPhysics is that their checkpoint assignments are basically the same as the pre-class assignments I have been using so it should be a pretty seamless transition for me from that perspective. I still haven’t figured out how easy it is to give students direct feedback on their checkpoint assignment questions in smartPhysics, and remember that I consider that to be an important part of the student buy-in that I have managed to generate in the past.

(edit: the following discussion regarding reflective writing was added Aug 11) Another option for getting students to read the text before coming to class is reflective writing, which is promoted in Physics by Calvin Kalman (Concordia).  From “Enhancing Students’ Conceptual Understanding by Engaging Science Text with Reflective Writing as a Hermeneutical Circle“, CS Kalman, Science & Education, 2010:

For each section of the textbook that a student reads, they are supposed to first read the extract very carefully trying to zero in on what they don‘t understand, and all points that they would like to be clarified during the class using underlining, highlighting and/or summarizing the textual extract. They are then told to freewrite on the extract. “Write about what it means.” Try and find out exactly what you don‘t know, and try to understand through your writing the material you don‘t know.

This writing itself is not marked since the students are doing the writing for the purposes of their own understanding. But this writing can be marked for being complete.

Clicker questions and other (inter)active physics classroom resources

Chad doesn’t mention anywhere in his post that he is thinking of using clickers, but I highly recommend using them or a suitable low-tech substitute for promoting an (inter)active class.  I use a modified version of Mazur’s Peer Instruction and have blogged about my specific use of clickers in my class in the past. Many folks have implemented vanilla or modified peer instruction with cards and had great success.

Clicker question resources: My two favourite resources for intro physics clicker questions are:

I quite like the questions that Mazur includes in his book but find that they are too challenging for my students without appropriate scaffolding in the form of intermediate clicker questions which can be found in both the resources I list above.

Clicker-based examples: Chad expressed frustration that “when I do an example on the board, then ask them to do a similar problem themselves, they doodle aimlessly and say they don’t have any idea what to do.” To deal with this very issue, I have a continuum that I call clicker-based examples and will discuss the two most extreme cases that I use, but you can mash them together to produce anything in between:

  • The easier-for-students case is that, when doing an example or derivation, I do most of the work but get THEM to make the important mental jumps. For a typical example, I will identify 2-4 points in the example that would cause them some grief if they tried to do the example completely on their own. When I work this example at the board (or on my tablet) I will work through the example as usual, but when I get to one of the “grief” points I will pose a clicker question. These clicker questions might be things like “which free-body diagram is correct?”, “which of the following terms cancel?” or “which reasoning allowed me to go from step 3 to step 4?”
  • The other end of the spectrum is that I give them a harder question and still identify the “grief” points. But I instead get them to do all the work in small groups on whiteboards. I then help them through the question by posing the clicker questions at the appropriate times as they work through the problems. Sometimes I put all the clicker questions up at the beginning so they have an idea of the roadmap of working through the problem.

An excellent resource for questions to use in this way is Randy Knight’s 5 Easy Lessons, which is a supercharged instructor’s guide to his calculus-based intro book. The first time I used a lot of these questions I found that the students often threw their hands up in the air in confusion. So I would wander around the room (36 students) and note the points at which the students were stuck and generate on-the-fly clicker questions. The next year I was able to take advantage of those questions I had generated the previous year and then had all the “grief” points mapped out and the clicker questions prepared for my clicker-based examples.

Group Quizzes

Not related to clicker questions, but they are related to the (inter)active class: group quizzes are something that I have previously posted about and I have also presented a poster on the topic. I give the students a weekly quiz that they write individually first, and then after they have all been handed in they re-write the quiz in groups. Check out the post that I linked to if you want to learn more about exactly how I implement these as well as the pros and cons. Know that they are my single favourite thing that happens in my class due to it being the most animated I get to see the students being while discussing the application of physics concepts. It is loud and wonderful and I am trying to figure out how to show that there is a quantifiable learning benefit.


The Science Learnification Weekly (April 10, 2011)

This is a collection of things that tickled my science education fancy in the last week or so. They tend to be clumped together in themes because an interesting find on the internet tends to lead to more interesting things.

The blogosphere was filled with posts on the Khan Academy again this week. Too many to link to, but one of the big points being made by the education bloggers is that Khan Academy should be trying to hire more educators to get involved instead of more programmers.

Textbooks

  • I need to teach reading comprehension: Mylene and I chat about how to get students to read and make sense of their textbooks. It turns into a discussion of my sort-of-implementation of JiTT (Just-in-Time Teaching) and some compare and contrast of student textbook reading vs. screencasting. Mylene took some of comments and incorporated them into a post on student preparation for class. Mylene had an insanely busy blogging week with 7 new posts (and she even got fresh-pressed) so make sure to check out some of her other posts from the week.
  • Textbooks: not just for memorizing anymore: Terie Engelbrecht has two major points to make about textbooks: (1) textbooks should be used as just one of many resources for knowledge acquisition and (2) textbooks should be used to help students learn how to read and understand informational text.

Chatty me on some “not from this past week” posts

I had some great conversations with other bloggers over on their blogs this week. Ones with Mylene were discussed above.

  • Gaming the classroom: Bret Benesh and I start strategizing how to gamify our classes in a way that would give rewards with classroom value in exchange for “advancing in the game” or “gaining experience points”. These rewards included ideas such as no longer having to demonstrate basic skills (such as integration by hand in upper-division physics courses) or gaining access to new types of assessments. We have now taken the discussion over to a collaborative document between the two of us and will report back when we figure out some more of the details.

More learning from mistakes

  • Leading with mistakes: Oops, missed this one last week in my collection of learning from mistakes post links. Mark Hammond talks some more about getting students to find mistakes that were made purposely by the teacher and discusses the evolution of mistake-prone characters that he and Kelly O’Shea use in their classes.

One of my favorite circuits questions as a lab practicum

  • Circuits Lab Practicum: Geoff Schmit posts one of my all-time favorite questions to give to students (usually on quizzes or exams) as a lab practicum. It’s the one where they have to figure out how a bunch of light bulbs are connected to a battery by unscrewing and re-screwing each of the bulbs and observing the behavior of the the other bulbs.

Global Physics Department

The Global Physics Department is the name we have given to the weekly physics education chat (9:30 EDT on Wednesdays) that got started through twitter. Lots of great things come up in our discussions there. Here are a few links of things that came up:

  • Tweetment of twitter in the classroom: At this past week’s chat/meeting John (JT) Miller gave a presentation on his use of twitter as part of his courses and he has a nice big collection of relevant links.
  • Report on our “conquest of cold” experiment: In the discussion that followed Miller’s presentation, John Burk pointed us to his post where he discusses the back-channel he had going while students (2), some fellow faculty, and his father-in-law watched the PBS’s Conquest of Cold from their respective homes.